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On the spatial coherence of laser beams 
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USA 
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Abstract. We examine the dependence of the spatial coherence across the beam of a multi- 
mode laser on the type of modes, the distribution of energy among them, and the degree of 
their statistical correlation. 

1. Introduction 

Laser beams are often assumed to be plane waves, lacking full temporal coherence, 
but having complete spatial coherence across their wavefronts. Since the spatial and 
temporal coherence properties of electromagnetic fields are coupled through the wave 
equations (Mandel and Wolf 1965), the above assumption is obviously an approxima- 
tion. In this paper we investigate the validity of this approximation in practical lasers 
and analyse the situations under which the transverse coherence is impaired. We show 
that for practically occurring laser dimensions and bandwidths, a beam having a set of 
longitudinal modes with the same transverse indices (whether they are locked, unlocked 
or imperfectly locked, see, eg, Smith 1970), is approximately completely coherent. 
On the other hand, when a set of longitudinal modes having the same transverse indices 
interferes with another longitudinal set with different transverse indices, coherence 
can be incomplete. Morley et a1 (1967) have investigated this problem and obtained 
an expression for the spatial coherence distribution. In this expression, the contribution 
of the effect of interaction between modes having the same frequency has been overlooked. 
In this paper, we obtain a more general expression, based on a statistical treatment of 
the problem and in which we take into consideration the degree of statistical correlation 
of the modes. In particular, we study the case of two sets of TEM~,, and r E M l l  modes 
and show that the spatial coherence function depends not only on the distribution of 
energy among the modes but also on the degree of their statistical correlation (coupling). 

The results of this work are valid regardless of the nature of physical processes 
taking place inside the laser (with which we are not concerned here). 

2. Mutual coherence function 

The second-order coherence of an optical field is described by the complex degree of 
coherence 
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is the mutual coherence function (MCF) and V(r ,  t )  is the electromagnetic field at the 
space-time point ( r ,  t) = (x ,  y, z ,  t). The MCF can be determined either by solving the 
two wave equations which it has to satisfy under appropriate boundary and symmetry 
conditions, or by solving the wave equation for the field and then using equation (2 ) .  
Since the wave equation has already been solved for different geometrical configurations 
of optical cavity resonators (Boyd and Gordon 1961, Kogelnik and Li 1966), it is simpler 
to follow the latter approach. 

The solution is in general a superposition of many modes, each with deterministic 
spatial distribution but with an amplitude which is a complex random variable. Thus, 
the coherence function is completely describable by the covariance matrix of the ampli- 
tudes. Accounting for a finite bandwidth of each mode, the temporal dependence of 
each mode becomes a stochastic process and in general, 

where (n, m) and (0 are subscripts for transversal and longitudinal behaviour of a mode 
TEM,,,, hm(r, w) is a deterministic function describing the spatial behaviour of each 
mode at a specific frequency w, gnml(w) is a complex random function describing the 
temporal statistics of the mode and Anml is a complex random variable describing the 
amplitude of each mode. 

In the case of confocal resonators (Boyd and Gordon 1961), 

where x and y are dimensions along the cross section, pz = x 2  + y2, X = x(27c/aA), 
Y = fi2n/aA), z is the longitudinal dimension measured from the centre of the cavity, 
b is the spacing between the mirrors, 5 = 2z/b, 2a is the diameter of the mirror, and Hn( ) 
is the nth Hermite polynomial. Also, gnml(w) is centred around the frequency 

R C  C 
wml = - 2 b  - ( l + m + n ) + R - I  b ( 5 )  

where c is the velocity of light. 
By substituting equations (3) and (4) into equations (2) and (l), we obtain the MCF 

in terms of the matrices (A~ml,4n,m,l , )  and (g&l(w)gn,m,l,(w)). In the following we discuss 
special cases in which the results simplify. 

3. Coherence of a beam in a single transverse mode 

If the field is in a single mode and is monochromatic, ie, if gml(w) = S(w - wnml), then 
Iy( = 1 and the field is completely coherent, as expected. 
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If the field is in a single mode, but is quasi-monochromatic with a bandwidth Ao 
and central frequency coo, then it can be easily shown that under the conditions : 

A o p ’  1 
<< 1 

00  by 1 +t2  
and 

where 

the spatial distribution function f : m ( ~ l ,  y , ,  z ,  0). fnm(x2, y,, z ,  0‘) is approximately 
insensitive to the variations of o and o’ within the bandwidth Ao and the field is almost 
completely coherent. 

To show this more clearly we calculated the transversal coherence function for the 
fundamental mode n = m = 0 when the field is stationary and Lorentzian (ie, 
(g$,o(o)go,o(o)) is Lorentzian) with a bandwidth Ao and centre frequency oo. The 
degree of coherence between a point on the beam axis and an off axis point is 

where p o  = [ ( lb /2n) ( l+52) ]”2  is the radius of the beam (l/e2 point of the Gaussian 
intensity distribution). 

Thus, the degree of coherence drops to l/e of its value at a radius of coherence 

which has a minimum when z = i b ,  ie, at the reflector surface and is equal to 
[ ( 2 b / n ) ( ~ ~ / A o ) ] ~ ~ ’ .  For all practical cases this radius is very large and hence the beam 
is almost completely coherent. 

In the case when many longitudinal modes coexist, all with the same transverse 
indices (m and n) and under the same conditions as in equation (6 )  (with Am the total 
bandwidth of all modes and coo their central frequency), the resulting field is transversely 
approximately completely coherent, irrespective of the relationship between the 
longitudinal modes, ie, whether they are free, mode locked or partially mode locked. 
This conclusion holds for both stationary and non-stationary (pulsed) fields. Note that 
the above analysis is independent of the physics of the lasing phenomenon and holds 
even when the laser is operated far below the threshold and radiates as a thermal source. 
Kimble and Mandel (1973) have recently confirmed experimentally that in this case 
the field of the beam is indeed nearly coherent. 

4. Coherence of multi-mode beams 

In this section we consider the only case in which the transverse coherence is considerably 
reduced, namely when more than one transverse mode coexist. For simplicity, we 
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The expression of the MCF obtained by Morley et al(l967) is similar to equation (9) 
but without the second term. In their special example, only two transverse modes exist, 
T E M ~ ~  and T E M ~ ~ ,  and the second term of equation (9) vanishes since it is impossible 
to have oool = olO1., I # l’. This is not always valid. For example, the two modes 
T E M ~ ~  and TEM,, can have oool = o1 l l r  when I = 1’+ 1. In this case, equation (9) 
becomes 

T(r, 2 r 2 , O )  = (I~00112>ft0(r1 3 woot)foo(r2, ooo,) 

+ < l ~ l l f 1 2 ~ f : l ~ r l  1 ~ 1 1 I ) f l l ( r 2 ?  0 1 1 1 )  

+ (A:o,Al1,1- l>f:o(rl3 ~ O O , ) f 1 1 ( ~ 2  5 woo,,) 

+ (Aoo1A:lJ- 1>foo(r29 o o o f ) f : l ( ~ l ~  ooo1). 

t 

By neglecting the dependence of the functions f on the frequency, and using the normal- 
ization E, (IAoof12) = 1, we can write 

T(r19 r2 9 0) = f*(r19 oo)fo(r2 9 0 0 )  + 6f:l(rl? wo)f11(r2 3 WO) 

+ cfto(r19 oo)f11(r2 1 o o ) +  c*foo(r2 9 wO)f:l(rl? 0 0 )  

where 6 = C, (IAll ,J2)  is a real number representing the ratio of the average intensities 
of the two sets of modes, E = C, (AXolA1 1,1 - 1 )  is a complex number representing their 
average correlation, and oo is the central frequency. The two parameters 6 and E 

describe completely the intensity distribution and the MCF of the laser beam. They 
satisfy the inequality I E I ’  6 161. When E = 0, the two modes are statistically uncorrelated, 
and when )el2 = 161 the two modes are completely correlated (mode locked). 

By simple substitution, the degree of transverse coherence between a point at the 
beam centre and an off-axis point, and the normalized intensity distribution are given 
in equations (10) and (1 1) respectively 
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where 
8X Y U = -  
1 + 5 2  

and 

1 - 5  A = L E - 2  tan-'- 
1 + 5  

in which LE is the phase of the parameter E. 

We plot these equations in figures 1 and 2. Figure 1 shows the intensity distribution 
for different values of 6 when the two modes are uncorrelated ( E  = 0, full curves). It also 
shows how the intensity distribution changes drastically if the modes are correlated 
(broken curves). The result is very sensitive to the phase of the correlation parameter E .  

Figure 2 shows the drop in the degree of transverse coherence for different ratios of 
intensities of the two uncorrelated modes (full curves). The degree of coherence is also 
quite sensitive to the correlation phase between the two modes (broken curves). When 
the two modes are completely correlated ( 1 ~ 1 '  = 6) the degree of coherence is 1, irrespective 
of the correlation phase. 

5. Conclusions 

The above examples demonstrate that the degree of spatial coherence depends on the 
types of modes, the distribution of energy among them, and the degree of their statistical 

Normalized distance from thc axis 

Fipre 1. Variation of normalized intensity with distance from the beam axis for different 
values S and e. (Distance from the median of the cavity 5 = 2.) Full curves represent the 
uncorrelated case (6 = 0). Broken curves represent the case of a set of partially correlated 
modes with the indicated c and 6 = 0.25. 
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Normalized distance from the axis 

Figure 2. Variation of the transverse degree of coherence with the distance of its two points 
(one on the axis), for different values 6 and c ( 5  = 2). Full curves represent the uncorrelated 
case (c = 0). Broken curves represent a set of partially correlated modes with indicated 
values of c and 6 = 0.25. 

coupling. Moreover, the theoretical graphs of figures 1 and 2 show that it is, in principle, 
possible to determine the parameters 6 and c from measurements of the intensity and 
the MC distributionst. The determination of these parameters is of interest since this 
sheds light on the physical processes taking place inside the laser. The feasibility of 
such measurements has been demonstrated by several workers (Bertolotti et al 1964, 
Morley et a1 1967, Kimble and Mandel 1973). 
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t Such determination is unique provided the measurements extend over a sufficient range of distances of the 
two space points (ie over a range of values of the 'normalized distance from the axis' in figures 1 and 2). 


